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Abstract

In this article, we determined optimum position of a discrete heater by maximizing the conductance and then studied heat transfer and
volume flow rate with the discrete heater at its optimum position in open cavities. Continuity, Navier–Stokes and energy equations are
solved by finite difference-control volume numerical method. The relevant governing parameters were: the Rayleigh numbers from 106 to
1012, the Prandtl number, Pr = 0.7, the cavity aspect ratio, A = H/L from 0.5 to 2, the wall thickness l/L from 0.05 to 0.15, the heater size
h/L from 0.15 to 0.6, and the conductivity ratio kr from 1 to 50. We found that the global conductance is an increasing function of the
Rayleigh number, the conductivity ratio, and a decreasing function of the wall thickness. Best thermal performance is obtained by posi-
tioning the discrete heater at off center and slightly closer to the bottom. The Nusselt number and the volume flow rate in and out the
open cavity are an increasing function of the Rayleigh number and the wall thickness, and a decreasing function of the conductivity ratio.
The Nusselt number is a decreasing function of the cavity aspect ratio and the volume flow rate is an increasing function of it.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The thermal performance of electronic packages con-
taining a number of discrete heat sources has been studied
extensively in the literature. The design problem in elec-
tronic packages is to maintain cooling of chips in an effec-
tive way to prevent overheating and hot spots. This is
achieved generally by effective cooling by natural convec-
tion, mixed convection and in certain cases by other means
such as heat pipes, and finally by better design. In the latter
case, the objective is to maximize heat transfer density so
that the maximum temperature specified for safe operation
of a chip is not exceeded. Thus, optimum placement of
discrete heaters may be required with respect to usual equi-
distant placement. In this respect, few theoretical and
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experimental studies have been published in various geom-
etries [e.g. [1–7]]. Recently, the authors studied the case of
natural convection heat transfer in an open square cavity
with one to three heaters placed on the adiabatic wall fac-
ing the opening. Their optimum positions were determined
and the heat transfer by natural convection was investi-
gated [8]. In these studies, the heaters are placed on an adi-
abatic wall, yet, in various applications, the discrete heaters
are placed on walls with finite thickness and conductance.

In the present study, we will address the case in which
the heater is placed on a wall with finite thickness and con-
ductance. Our aim is (i) to determine optimum positions of
a discrete heater placed on the vertical wall facing the open-
ing of cavities. The vertical wall has a finite thickness and
conductance, and is in contact with the ambient air at both
sides. The horizontal walls are insulated and (ii) to study
the conjugate heat transfer and determine the thermal per-
formance of the system with the heater at its optimum
position.
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Nomenclature

A enclosure aspect ratio = H/L
cp heat capacity (J/kg K)
g acceleration due to gravity (m/s)
H cavity height (m)
h heater size (m)
k thermal conductivity (W/m K)
L cavity width (m)
l wall thickness (m)
Nu Nusselt Number, defined by Eq. (6)
p pressure (Pa)
P dimensionless pressure = (p � p1)L2/qa2

Pr Prandtl number = t/a
q00 heat flux (W/m2)
q dimensionless heat flux = oh

oX

Ra Rayleigh number = gbq00L4/(tak)
t time (s)
U,V dimensionless fluid velocities = uL/a,vL/a
_V dimensionless volume flow rate through the

opening
X,Y dimensionless Cartesian coordinates = x/L,y/L,
x,y Cartesian coordinates

Greek symbols

a thermal diffusivity (m2/s)
b volumetric coefficient of thermal expansion 1/K
t kinematic viscosity (m2/s)
q fluid density (kg/m3)
w stream function
h dimensionless temperature = (T � T1)/(Lq00/k)
s dimensionless time = at/L2

Superscript
– average

Subscripts

ext extremum
in into cavity
max maximum
opt optimum
out out of the cavity
1 ambient value
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2. Problem and mathematical model

First, we determine the optimum position of a discrete
heating element in open cavities installed on a conducting
wall facing the opening, cooled by natural convection. Sec-
ond, we study heat transfer performance of each case using
the heater at its optimum position and carry out a sensitiv-
ity study on the governing parameters.

Schematic of the two-dimensional open square cavity
with a discrete heating element and the boundary condi-
tions are shown in Fig. 1. Horizontal boundaries of the
cavity are adiabatic, the left face of the solid wall is isother-
Fig. 1. Schematic of open cavities, the coordinate system and boundary
conditions.
mal and its right side is in the open cavity in contact with
the ambient air. A discrete heating element is installed on
the solid wall inside the cavity. The heating element of
height h and coordinate (0,yi) dissipates heat at constant
heat flux, q00. The cooling air from a reservoir enters the
cavity through the lower part of the opening; it circulates
along the heating element and exits from the upper part
of the opening.

We assume that the fluid is Newtonian, the radiation is
negligible and the third-dimension has a negligible effect on
the flow and heat transfer. With these assumptions, we use
two-dimensional conservation equations for mass, momen-
tum and energy with Bussinesq approximation. By using L

as the length scale, a/L as the velocity scale, Lq00/k as the
temperature scale and L2/a for the time scale, we obtain
following non-dimensional equations

oU
oX
þ oV

oY
¼ 0 ð1Þ

oU
os
þ U

oU
oX
þ V

oU
oY
¼ � oP

oX
þ CPrr2U ð2Þ

oV
os
þ U

oV
oY
þ V

oV
oY
¼ � oP

oY
þ CPrr2V þ RaPrh ð3Þ

oh
os
þ U

oh
oX
þ V

oh
oY
¼ krr2h ð4Þ

where C is a general diffusion coefficient and 1 in the fluid
region and 1015 in the solid region, kr is 1 in the fluid region
and ks/kf in the solid region. C and kr are introduced in the
equations to ensure U = V = 0 everywhere including at the
solid–fluid interface and the conduction is accounted for in
the solid region.



Table 1
Grid independence study results with A = 1, ‘/L = 0.10, kr = 10

Size 21 � 21 31 � 31 61 � 61 101 � 101

Nu 3.227 3.111 3.103 3.077
Ra = 108 V 5.855 5.557 5.567 5.455

C 3521.540 3546.938 3582.945 3597.985

Nu 13.159 12.140 12.069 11.775
Ra = 1010 V 24.382 29.913 29.743 29.256

C 4125.980 3964.059 3953.611 3953.611
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The governing parameters are Ra = gbq00L4/(tak) and
Pr = t/a.

The average and normalized Nusselt numbers are calcu-
lated as

Nu ¼
�
R A

0
oh
oX dYR A

0
ðh1 � h2Þ

ð5Þ

Nu ¼ NuRa

NuRa¼0

ð6Þ

The volume flow rate, _V is calculated as

_V ¼ �
Z

X¼1

U indY ð7Þ

where Uin = UX=1 if UX=1 < 0 and Uin = 0 if UX=1 P 0.
The stream function is calculated from its definition as

U ¼ � ow
oY

; V ¼ ow
oX

ð8Þ

w is zero on the solid surfaces and the streamlines are
drawn by Dw = (wmax � wmin)/n with n is the number of
increments.

Boundary conditions are

On solid surfaces : U ¼ 0; V ¼ 0 ð9Þ

X ¼ 0 to 1; Y ¼ 0 and A :
oh
on
¼ 0 ð10Þ

X ¼ 0; Y ¼ 0 to A : h ¼ 0 ð11Þ

X ¼ 1; Y ¼ 0 to A :
oV
oX
¼ 0;

oU
oX
¼ � oV

oY
;

oh
oX

� �
out

¼ 0; hin ¼ 0 ð12Þ

On the heater : q ¼ oh
oX

ð13Þ

The boundary condition at the opening, Eq. (12) is shown
to be a satisfactory for the case of computation domain
confined to the open cavity [9].

The conductance is calculated as

C ¼
R yþh

y q00dy

kðT max � T1Þ
¼ h=L

hmax

ð14Þ
3. Numerical technique

The numerical method used to solve Eqs. (1)–(4) with
the boundary conditions Eqs. (9)–(13) is the SIMPLER
(semi-implicit method for pressure linked equations
revised) algorithm [10]. The computer code based on the
mathematical formulation presented above and the SIM-
PLER method were validated earlier with respect to the
benchmark [11]. The results of validation with the bench-
mark [12] as well as another [13] showed that the deviations
in Nusselt number and the maximum stream function at
Ra = 106 were 0.60% and 1.12%, respectively. It was seen
that the concordance was excellent. In addition, the aver-
age Nusselt numbers at the hot and cold walls were com-
pared, which showed a maximum difference of about
0.5% in all runs. The present code was tested also to simu-
late the case studied by Chan and Tien with enlarged com-
putational domain [14]. We used restricted computational
domain and compared the results with theirs with extended
computational domain. For Ra = 106 for example, we
found that the deviations in the Nusselt number and the
volume flow rate were 1.53% and 0.59%, respectively,
which is considered to be satisfactory [9].

Uniform grid in X and Y direction was used for all com-
putations. Grid convergence was studied for the case of
square cavity having ‘/L = 0.10 and kr = 10 with grid sizes
from 21 � 21 to 101 � 101 at Ra = 108 and 1010. The
results are presented in Table 1. We see, for example, at
Ra = 1010 that between 31 � 31 and 61 � 61, the variation
in Nusselt is 0.59%, it is 0.57% in volume flow rate, and
0.28% in conductance. Thus, 31 � 31 grid size was a good
choice from the computation time and precision point of
view for the square cavity. We conducted similar tests with
the shallow and tall cavities and used 61 � 31 for A = 0.5
and 31 � 61 for A = 2 grid sizes. The grid size in the wall
was 5, 10 and 15 in the X direction for the wall thickness
of ‘/L = 0.05, 0.10 and 0.15, respectively, and the rest were
in the cavity. Using a computer with a processor of
3.2 GHz clock speed, for A = 1, with 31 � 31 grid size, at
Ra = 1010, the typical execution time was 92 s.

A converged steady state solution was obtained by iter-
ating in time until variations in the primitive variables
between subsequent time steps were:X
ð/old

i;j � /i;jÞ < 10�4 ð15Þ

where / stands for U, V, and h.
Within the same time step, the residual of the pressure

term was less than 10�3 [10]. In addition, the accuracy of
the solution was double-checked using the energy conser-
vation on the domain to ensure it was less than 10�4.

4. Results and discussion

In the first part, we present the optimization study
results and in the second, a parametric study results
obtained with the discrete heating elements at their opti-
mum position. The variable geometrical parameters con-
sidered are, the aspect ratio, A = 0.5, 1 and 2, and the
dimensionless wall thickness, ‘/L = 0.05, 0.10 and 0.15.
The dimensionless height of heating element was set as
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h/L = 0.15, 0.3 and 0.6 corresponding to A = 0.5, 1 and 2,
respectively, which results in a constant ratio of the heater
to cavity height. The Rayleigh number was varied from
Ra = 106 to 1012. The Prandtl number, Pr = 0.70 for air
was kept constant. The conductivity ratio was varied from
kr = 1 to 50.
4.1. Optimization study

We carried out studies to obtain the optimum position
of the heating element by varying its position. The proce-
dure was as follows: (i) We compute conductance C(Y) at
a constant Ra, (ii) we determine the maximum conduction,
Cmax at its optimum position Yopt. We note that Yopt in this
study shows the lower edge position of the heater, yet Cmax

may be somewhat near the center of the heater. (iii) We
repeat the steps (i) and (ii) to determine C(Y), Cmax and
Yopt at all the other Rayleigh numbers, from 106 to 1012.

Typical results to obtain the conductance C(Y) for the
case of ‘/L = 0.10, h/L = 0.30, A = 1 and kr = 10 at
Ra = 106, 108 and 1010 are presented in Fig. 2a. We can
make the following observations: (i) for all the Rayleigh
numbers, the conductance changes with the position of
the heater. We have smaller conductance at the lowest posi-
tion when the heater is at the bottom; the conductance is
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Fig. 2. The maximization of the global conductance with the heat source
of h/L = 0.30. The scales of the curves for kr = 1 and 50 are 4C and
0.25C = abscissa value, respectively.
increasing rapidly as its position is raised reaching a broad
maximum around 0.15 < Y < 0.55 and it is decreasing
thereafter to another low conductance at the top position.
For example, at Ra = 106, the maximum is when the lower
edge of the heater is Yopt = 0.30, which corresponds to the
position of heater Y from 0.30 to 0.60. The center of the
heater is at Y = 0.45 for this case. This result is expected
since the heat transfer regime at Ra = 106 is conduction
dominated and the heater’s optimum position is slightly
off center at a lower position of the cavity, (ii) as the Ray-
leigh number is increased, the air flow as well as the con-
ductance is increased. As we will see later, the heat
transfer becomes by convection as well as conduction at
Ra = 108, the heater position is again at the same level,
at Yopt = 0.30. For Ra = 1010, it is at Yopt = 0.40. Follow-
ing the increased air flow rate, the conductance, C(Y) is
increased accordingly, (iii) for all cases, we see broad max-
ima; we note that using the computation results or chang-
ing scale of conductance, it is not difficult to identify Cmax

at its Yopt.
The effect of the conductivity ratio, kr at Ra = 108 is pre-

sented in Fig. 2b for the same case in Fig. 2a. We see that the
conductance is strongly affected by the conductivity ratio.
Higher is the conductivity ratio, higher becomes the con-
ductance. As the conductivity ratio is increased, wext/hmax

are both reduced since the heat transfer in the cavity is
reduced for a given Rayleigh number. For example at
Ra = 108, for kr = 1, wext/hmax = �12.8222/484.22E-6,
for kr = 10, wext/hmax = �5.55695/82.82E-6 and for kr =
50, wext/hmax = �1.98097/17.32E-6. We see that both
wext/hmax = are decreasing function of kr. The optimum
positions are Y = 0.2 for kr = 1,0.3 for kr = 10 and 50.

To see the reason for the observations made with Fig. 2,
we present streamlines and isotherms in Fig. 3 for the cases
corresponding to Fig. 2 at Ra = 106, 108 and 1010 (shown
with a–c, respectively) and kr = 1 (the upper figure) and
10 (the lower figure) for each Rayleigh number. The heater
size is h/L = 0.30 and it is at its optimum position for each
Rayleigh and conductivity ratio. We observe in Fig. 3a at
Ra = 106 that the heat transfer is convective for kr = 1; it
is conduction dominated for kr = 10. This is expected since
for kr = 1, the wall having the same conductivity as that of
the air, is insulated. Thus, the heat dissipated by the heater
is mostly transferred by convection in the cavity. For
kr = 10, a part of the heat goes through the wall and
dissipated at the left side at h = 0 and the rest is transferred
by convection through the cavity opening. Indeed, for
kr = 1, wext/hmax = �1.0091893/632.9E-6, and for kr = 10,
�0.1262171/83.9E-6, which show highly increased convec-
tion and reduced maximum temperature for kr = 1. At
Ra = 108 in Fig. 3b, for kr = 1, wext/hmax = �12.8222/
484.22E-6, and for kr = 10, �5.55695/82.82E-6. We see in
this case a similar phenomenon to that at Ra = 106, how-
ever the convection becomes strong also with kr = 10.
Finally, at Ra = 1010 in Fig. 3c, for kr = 1, wext/hmax =
�39.141833/290.03E-6, and for kr = 10, �27.326857/
74.07E-6, thus, the heat transfer is mainly by convection



Fig. 3. Streamlines (on the left) and isotherms (on the right) for A = 1,
‘/L = 0.10, for (a) Ra = 106, (b) Ra = 108 and (c) Ra = 1010. The upper
figure is for kr = 1 and the lower figure is for kr = 10 for each case.
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for both. Following our observations with Fig. 2a, we see
for kr = 0.10 at the three Rayleigh numbers of Fig. 3 that
there is no change in the circulation of air in the cavity at
Ra = 106 and 108, hence the heater position is the same.
At Ra = 1010, the air circulation shifts upward and the hea-
ter position becomes higher. At Ra = 108 and for kr = 1 and
10 of Fig. 2b, again we see in Fig. 3b that the air circulation
is relatively strong and sweeps lower level of the wall for
kr = 1. The heater position is at Yopt = 0.20. In contrast,
the air circulation is weaker and at higher level for
kr = 10, hence the heater position is at Yopt = 0.30. Figs. 2
and 3 show that the other parameters being constant, the
optimum heater position is a strong function of the Ray-
leigh number as well as the conductivity ratio.

It was seen for the majority of the cases studied (not
shown here) that the optimum heater positions Yopt deter-
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mined from the computed data were generally slightly
decreasing function of the Rayleigh number, although in
some cases, as observed in Fig. 3 for example, it was
slightly increasing function. On the other hand, in most
of the cases, Yopt is found to be an increasing function of
the conductivity ratio as observed earlier with Fig. 2. The
maximum conductance, Cmax obtained from the computed
data showed for all cases that Cmax is an increasing func-
tion of both Ra and kr. For example, we present in
Fig. 4, Cmax as a function of Ra with kr as a parameter
for the case of A = 1, h/L = 0.30 and kr = 1,10 and 50.
We see that Cmax is an increasing function of both Ra

and kr. This dependence is stronger when the conductivity
ratio is small. This is because, as we discussed earlier,
kr = 1 corresponds to insulated wall case, in which the
cooling is mainly by convection. As a result, hmax is higher
and by Eq. (14), Cmax lower. For higher kr, the cooling is
by conduction through the wall and by convection in the
cavity, hence the cooling is better, hmax is smaller and Cmax

is higher.
4.2. Heat transfer and volume flow rate

The average normalized Nusselt number by Eq. (6) and
the volume flow rate _V by Eq. (7) are calculated as a func-
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and h/L = 0.60 for A = 2 with ‘/L and A as parameters. Solid line:
‘/L = 0.05, dotted line: ‘/L = 0.10, dashed line: ‘/L = 0.15.
tion of Rayleigh number and presented in Fig. 5 for the
case of A = 1 with ‘/L and kr as parameters.

For kr = 1, we see in Fig. 5a that Nu is an increasing
function of Ra and ‘/L. Starting at Ra = 106, the heat
transfer is by convection dominated. The Nusselt number
is a weak function of the wall thickness since for kr = 1,
the wall is insulated and ‘/L has a minor effect on the wall
conductance. Nevertheless, we see that for ‘/L = 0.05 with
respect to ‘/L = 0.10 and 0.15, the conductance through
the wall is relatively higher, i.e. the heat transfer by conduc-
tion is higher as a consequence of which convection is
lower in the cavity at Ra from 106 to 108. Indeed, as the
wall thickness is increased the conductance becomes smal-
ler, the heat transfer by conduction through the wall is
lower, and the convection heat transfer in the cavity
becomes dominant. At Ra > 108 the effect of ‘/L on Nu is
less. For kr = 10, Fig. 5b shows a similar result, i.e. for
‘/L = 0.05 and 10 the convection starts at Ra > 107 above
which it becomes dominant. The effect of ‘/L on Nu is con-
siderable: at Ra > 107, for ‘/L = 0.05, the wall conductance
is relatively high, as a result of which Nu is relatively lower
with respect to ‘/L = 0.10 and 0.15. For kr = 50 in Fig. 5c,
the heat transfer is conduction dominated up to Ra = 108

above which the convection is the main heat transfer mode
and the wall thickness ‘/L has a relatively smaller effect on
Nu. This is for the same reason as discussed above with
A
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Fig. 7. Nusselt number (a) and volume flow rate (b) as a function of the
aspect ratio at various Rayleigh numbers.
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Fig. 5a. Thus, the heat transfer by conduction through the
wall is increasing with increasing kr as a consequence of
which the heat transfer by convection in the cavity is rela-
tively weaker. Generally, Nu is an increasing function of
Ra, except at conduction dominated regime as observed
in Fig. 5a–c.

The volume flow rate as a function Rayleigh number
with kr and ‘/L as parameters is presented in Fig. 5d–f.
Following the results in Fig. 5a–c, we observe that _V is
an increasing function of Ra and ‘/L and decreasing func-
tion of kr. At low Ra, since _V is smaller, the difference for
Fig. 8. Streamlines (on the left) and isotherms (on the right) for the case of Fig
h/L = 0.30, and (c) A = 2, h/L = 0.60.
various ‘/L is more discernable. Further, _V is smaller for
increasing kr and decreasing ‘/L. The same is true at higher
Ra however due to logarithmic scale, they are less
discernible.

We present Nu and _V as a function of Ra with the cavity
aspect ratio, A and ‘/L as parameters in Fig. 6a–f. The
other parameters are kr = 50 and h/L = 0.15 for A =
0.05, h/L = 0.30 for A = 1 and h/L = 0.60 for A = 0.60.
For A = 0.5, i.e. the shallow cavity, the heat transfer
regime is by conduction at Ra from 106 to 108, even beyond
for ‘/L = 0.05, thereafter it is convection dominated. Nu is
. 7 (‘/L = 0.10, kr = 50) and Ra = 108. (a) A = 0.5, h/L = 0.15, (b) A = 1,
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an increasing function of Ra and ‘/L. As the cavity aspect
ratio, A increases, the convection starts to be dominant
regime at lower Ra numbers: for A = 1, i.e. square cavity,
the convection starts at Ra > 107, and for A= 2, i.e. the tall
cavity, it starts at Ra > 106. Nu is a weak function of ‘/L
for A = 1, and it is a strong function of it for A = 2. We
see that for all cases of the cavity aspect ratio, Nu and _V
are an increasing function of Ra and ‘/L.

The flow rate, _V as a function of Ra with ‘/L as a
parameter is shown in Fig. 6d–f. We see that _V is an
increasing function of both Ra and ‘/L for A = 0.5, 1
and 2. These results expected following our observations
in Fig. 6a–c. Generally, the flow rate is reduced with
decreasing cavity aspect ratio, A.

Next, we will present the effects of the aspect ratio, A,
the conductivity ratio, kr and the wall thickness, ‘/L on
the Nusselt number and the volume flow rate.

Fig. 7 shows Nu and _V as a function of A with Ra as a
parameter while keeping ‘/L = 0.10 and kr = 50 constant.
The heater length, h/L is variable with different aspect
ratio, A, which is shown in the figure. It is noted that
kr = 50 corresponds to the case with high conductance
through the wall, as a result, relatively less convection in
the cavity. We see in Fig. 7a that at low Rayleigh number,
Ra = 106, the heat transfer is conduction dominated, and
kr
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Fig. 9. (a) Nusselt number and (b) flow rate as a function of the
conductivity ratio with the Rayleigh number as a parameter.
Nu ffi 1 and almost the same for shallow, square and tall
cavities. At Ra = 108 and A = 0.5, i.e. a shallow cavity,
the heat transfer is still conduction dominated; however,
for square and tall cavities, the convection is significant.
The reason for the increased convection heat transfer at
higher aspect ratios is due to increased flow through the rel-
atively larger opening. Indeed, wext = �0.316515 for
A = 0.5 and wext = �5.16181 for A = 2, thus showing the
circulation is increased by 16 times. In contrast, Nu is
increased by less than 1.5 times. At Ra = 1010, the heat
transfer is convection dominated in all cases; Nu became
a decreasing function of the aspect ratio. wext = �11.4165
and �26.2306 for A = 0.5 and 2, respectively, i.e. the circu-
lation is increased by 2.3 times. Thus, the cooling is done
by circulating more air through the cavity, as we will see
next with Fig. 8, the maximum temperature is decreased,
as a result of which Nu is decreased by 1.8 times. At still
higher Rayleigh number, Ra = 1012 (not shown in Fig. 7),
the Nusselt number was similarly a decreasing function
of A. Fig. 7b shows _V as a function of A for the same case;
_V is increasing with A from 0.5 to 2 at all Rayleigh num-
bers. At Ra = 1010 for example, _V is increased by 1.64
times when the aspect ratio, A changed from 0.5 to 1 and
1.4 times when it is changed from 1 to 2. The results show
that the volume flow rate increases due to more efficient
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Fig. 10. Nusselt number (a) and volume flow rate (b) as a function of the
wall thickness with the Rayleigh number as a parameter.
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circulation through larger openings, like tall cavity. The
flow rate _V is a strong function of A at low Ra; it is less
so as Ra increases. In fact, _V for A from 0.5 to 2 increases
about 42 times at Ra = 106 and about 1.8 times at
Ra = 1012.

To see the reason for changes in the volume flow rate
and heat transfer with cavity aspect ratio, the streamlines
and isotherms for the same case of Fig. 7 at Ra = 108 are
traced and presented in Fig. 8 for A = 0.5, 1 and 2. wext/
hmax for A = 0.5, 1 and 2 in Fig. 8a–c are �0.316515/
27.76E-6, �2.01127/17.33E-6 and �5.16181/9.36E-6,
respectively. The streamlines and isotherms show that the
flow in the shallow cavity is weak and the maximum tem-
perature is high; in contrast, in the square cavity, the circu-
lation intensity is increased by 15% and the maximum
temperature is reduced by 36%. For the tall cavity, the cir-
culation intensity is increased further by 157% and the
maximum temperature is decreased by 50%. We see that
the aspect ratio is a strong parameter affecting the maxi-
mum temperature and as a result the heat transfer as
observed with Fig. 7.

The effect of kr on Nu and _V for the case of A = 1,
h/L = 0.30 and ‘/L = 0.10 is presented in Fig. 9 at
Ra = 106, 108 and 1010. We see that both Nu and _V are
decreasing function of kr at all three Rayleigh numbers.
At Ra = 106, the heat transfer is conduction dominated
and it is less dependent on kr. At higher Rayleigh numbers,
following earlier observations with Figs. 5 and 6, the results
are: as kr is increased, the conductance is increased, as a
result of which the heat transfer and the volume flow rate
in the cavity are decreased. We see that kr is a strong
parameter affecting the heat transfer and flow rate in the
cavity.

The effect of the wall thickness, ‘/L on Nu and _V for the
same case of Fig. 9, but with kr = 50 is presented in Fig. 10
at the same three Rayleigh numbers. Generally, Nu and _V
are an increasing function of ‘/L, except for Nu at
Ra = 106. As the wall thickness is increased, the conduc-
tance through the wall is decreased; as a result, the heat
transfer and the volume flow rate are increased through
the open cavity. However, we see that the effect of the wall
thickness at high Rayleigh numbers is not too significant.

5. Conclusions

We studied natural convection heat transfer in open cav-
ities with a discrete heat source installed at its optimum
position at the vertical wall with finite thickness facing
the opening. The aspect ratio was varied from 0.5 to 2,
the wall thickness from 0.05 to 0.15 and the heater size
from 0.15 to 0.60. The Rayleigh number varied from 106

to 1012, the conductivity ratio from 1 to 50; the Prandtl
number was 0.7. Conservation equations of mass, momen-
tum and energy were solved by finite difference-control vol-
ume numerical method. At the beginning, the optimum
position of discrete heat source was determined. Then,
the heat transfer and volume flow rate were determined.
In view of the results presented, the main points can be
summarized as follows.

The optimum position of a discrete heater in an open
cavity is usually at its off center. Its position depends on
the Rayleigh number, the conductivity ratio of the wall,
the aspect ratio of the cavity and the wall thickness.

In determining the maximum conductance, we observed
broad optima. However, this did not cause any difficulty in
determining the position of heaters since numerical results
clearly showed the maximum conductance and its coordi-
nates. On the other hand, we note broad optima may give
certain flexibility for positioning of the heater if the circum-
stances require it.

Depending on the cavity aspect ratio and the conductiv-
ity ratio, the heat transfer is conduction dominated at low
Rayleigh numbers, Ra from 106 to 108; it is convection
dominated regime at higher Rayleigh numbers up to 1012

in this study. Generally, the Nusselt number and the vol-
ume flow rate are increasing functions of the Rayleigh
number and the wall thickness. The Rayleigh number is a
decreasing function of the cavity aspect ratio and the con-
ductivity ratio. The volume flow rate is an increasing func-
tion of the cavity aspect ratio and a decreasing function of
the conductivity ratio. Ra, A, kr are significant and ‘/L is
relatively less significant parameters affecting thermal per-
formance of discrete heaters at their optimum positions.
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